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We study a class of Markovian stochastic processes in which the state space is a 
space of lattice contours and the elementary motions are local deformations. We 
show, under suitable hypotheses on the jump rates, that the infinitesimal 
generator has zero mass gap. This result covers (among others) the BFACF 
dynamics for fixed-endpoint self-avoiding walks and the Sterling-Greensite 
dynamics for fixed-boundary self-avoiding surfaces. Our models also mimic the 
Glauber dynamics for the low-temperature Ising model. The proofs are based on 
two new general principles: the minimum hitting-time argument and the mean 
(or mean-exponential) hitting-time argument. 
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1. I N T R O D U C T I O N  

In this paper we study a class of Markovian stochastic processes (in either 
discrete or continuous time) in which the state space is a space of lattice 
contours 7 (of variable length) and the elementary motions are local defor- 
mations. These stochastic processes are reversible (i.e., satisfy detailed 
balance) with respect to the probability measure ~B(7)=constxe-~l~l,  
where [71 is the length of % Our main concern is the rate at which the 
process approaches equilibrium, and in particular whether this approach 
occurs exponentially fast. 
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Reversibility implies that the time-evolution semigroups are self- 
adjoint in the Hilbert space L2(za), and our approach in this paper is to 
study the spectral properties of these semigroups. In the discrete-time case, 
the transition matrix is a contraction with an eigenvalue at 1; exponential 
convergence to equilibrium (in the L 2 sense) means that the rest of the 
spectrum is contained in some interval [ - 2 ,  2] with 2 <  1. In the con- 
tinuous-time case, the infinitesimal generator is positive-semidefinite with 
an eigenvalue at 0; exponential convergence to equilibrium (in the L 2 
sense) means that the rest of the spectrum is bounded away from 0. In such 
cases we say that the transition matrix or infinitesimal generator has a 
nonzero mass gap. 

In a previous paper ~ (see also ref. 2), the authors considered a super- 
ficially similar model (3) in which the state space consists of self-avoiding 
walks (of variable length) with free endpoints, and the elementary moves 
are creation and destruction of bonds at one of the endpoints. We 
showed ~ that this stochastic process exhibits exponential convergence to 
equilibrium, and we obtained two-sided bounds on the mass gap. By con- 
trast, in this paper we show, under suitable hypotheses on the jump rates, 
that the contour models with local-deformation dynamics do not have 
exponential convergence to equil ibrium--that  is, they have zero mass gap. 

At first we found this result to be extremely surprising. Indeed, in 
models of self-avoiding walks of f i x ed  length N with local-deformation 
dynamics, the mass gap is believed to be of order N -(2+2v), where v is the 
critical exponent for the mean size of self-avoiding walks4; this belief is 
based on a simple heuristic argument involving the diffusion of the center- 
of-mass of the SAW. (7) Since the models considered in this paper are the 
natural generalizations of local-deformation dynamics to the grand 
canonical (variable-N) ensemble, it is natural to conjecture that the mass 
gap is of order (N) -(2+2v), where ( N )  is the average length of walks in 
the equilibrium ensemble. This conjecture is, however, based on the 
implicit assumption that transitions between walks of different lengths N 
are sufficiently fast (i.e., faster than equilibration of walks at a fixed length 
N), and it is this assumption that breaks down in the models considered 
here if the jump rates grow sufficiently slowly with N. Roughly speaking, in 
these processes there are rectangular configurations 7 in which no 
immediate motions shorten the length of y, and these configurations behave 

4 This statement requires some qualification. First, local-deformation dynamics for fixed- 
length SAWs is always nonergodic, (4~ so the conjectured mass gap refers to the spctrum of 
the transition matrix restricted to some particular ergodic class (e.g., the ergodic class of a 
straight rod). Second, if the dynamics happens to obey spcial conservation laws, then the 
mass gap may be considerably smaller than N ~2+>) (see refs. 5 and 6). For more 
discussion, see ref. 7. 
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in a metastable manner: it takes too many jumps (or too long a time) to 
reach a fixed shorter configuration. Here, "too many" is defined relative to 
a property of the invariant measure z~a. In Section 3 we abstract this idea 
into two general principles for proving upper bounds on the mass gap: the 
minimum hitting-time argument (Theorem3.1) and the mean (or mean- 
exponential) hitting-time argument (Propositions 3.3-3.10). In Section 4 we 
then apply these ideas to the contour models. 

Our models have two very different applications, depending on the 
interpretation of the contours: 

(a) Peierls contours, If the contours are interpreted as Peierls con- 
tours separating regions of + and - spins in a d-dimensional Ising model, 
then our dynamics mimics the single-spin-flip Glauber dynamics (8'9) for the 
Ising model, in the low-temperature approximation in which contours are 
dilute and hence noninteracting. Here our parameter fl is proportional to 
the inverse temperature of the corresponding Ising model, and our total 
jump rates r(y) should be taken to be proportional to the length of the con- 
tour. In an important recent paper, Huse and Fisher (I~ argued heuristically 
that this contour model should have zero mass gap if (and only if) 
1 < d <  3. Unfortunately, our rigorous bounds are one power of n weaker 
than their heuristic estimates,5 and so our theorems apply (for these jump 
rates) only for 1 < d < 2 .  (In other words, for d = 2  we are just barely 
unable to treat jump rates growing as fast as the length of the contour.) See 
Section 4.3 for discussion. 

(b) Self-avoiding walks, surfaces, etc. If the contours are interpreted 
as self-avoiding walks with fixed endpoints, then our dynamics includes, 
as a special case, the Berg-Foerster-Aragfio de Carvalho-Caracciolo- 
Fr6hlich ( B F A C F )  ( I H 4 ' 7 )  Monte Carlo algorithm for simulating a grand 
canonical ensemble of such walks. Here e -~ plays the role of a bond 
activity (fugacity), and the jump rates should be taken to be bounded. Our 
results imply the vanishing of the mass gap for this Markov chain. Higher- 
dimensional versions can be interpreted as self-avoiding surfaces with fixed 
boundary, in which case the dynamics includes the Sterling-Greensite 
algorithm.~15 2o~ 

2. M A R K O V  C H A I N S  A N D  M A R K O V I A N  J U M P  PROCESSES 

In this section we review the basic theory of Markov chains and 
Markovian jump processes from both an analytic and a probabilistic point 

5 Here n is the linear extension of an approximately spherical or cubical contour  7,,; thus, 
fTn[ ~ n a - i ,  and the volume enclosed by 7. is of order n a. 
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of view. (More information on Markov chains and processes can be found 
in refs. 21-22 and 22-27, respectively.) 

Our primary point of view is analytic: starting from a transition 
probability kernel P or an infinitesimal generator kernel G, our aim is to 
study the spectrum of P or G acting as an operator on the space L2(~), 
where 7c is the invariant measure. In fact, our main theorems and their 
proofs are purely analytic; from a logical point of view, probability theory 
plays no role. However, the motivation for studying these particular 
operators arises from probability theory: we want to understand the rate of 
convergence to equilibrium for the stochastic process generated by P or G. 
Moreover, the physical interpretation of our theorems and proofs involves 
hitting times in this stochastic process. It is thus incumbent on us to con- 
struct this process, and to make the connection between the probabilistic 
and analytic approaches. In discrete time, this is relatively trivial. In con- 
tinuous time, however, it is far from trivial, and for a good physical reason: 
if the jump rates are unbounded, there arises the possibility that the system 
could make infinitely many jumps in a finite time ("explosion"). Much of 
Section 2.2 is devoted, therefore, to giving sufficient conditions for the 
absence of explosion. (In Section 4.1 we verify these hypotheses for our 
stochastic contour models under extremely weak conditions on the trans- 
ition rates.) These issues are nevertheless somewhat tangential to our main 
theme of L 2 spectral bounds, and so the reader who is willing to take on 
faith the existence of a stochastic process with the desired properties may 
skim lightly over Section 2.2. 

We state our results for Markov chains and processes on a general 
(measurable) state space (X, ~r) whenever it causes no complications to do 
so. However, in all the applications in this paper, X is countable (and of 
course Y" is the ~-field of all subsets of X). Therefore, the reader is welcome 
to imagine that all integrals are in fact sums, all kernels are matrices, and 
so on. 

2.1, D i s c r e t e  T i m e  

Let us start by considering a positive-recurrent, discrete-time Markov 
chain with measurable state space (X, 5f), transition probability kernel 
P(x, dy), and invariant probability measure re. This means that if the 
system is in state x at time t, then its state at time t + 1 will be chosen 
randomly according to the probability distribution P(x,.). The invariance 
of rr means that 

f ~(dx) P(x, dy) -= rr(dy) (2.1) 
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In this situation it is not hard to show (e.g., using H61der's inequality) that 
P induces a positivity-preserving linear contraction on L2(n) [and in fact 
on all the spaces LP(~)] by 

(Pf)(x) = [ P(x, dy ) f ( y )  (2.2) 
d 

The constant function 1 is an eigenvector of P (and of its adjoint P*) with 
eigenvalue 1. The spectrum of P [" 1 - thus lies in the unit disk, and the goal 
of this paper (along with refs. 1, 2, and 28) is to prove bounds on its 
location. In particular, we show that in certain circumstances there must be 
spectrum very near 1. 

The Markov chain is said to be reversible (or to satisfy detailed 
balance) with respect to ~ in case 

rc(dx) P(x, dy) = rc(dy) P( y, dx) (2.3) 

Equivalently, the chain is reversible if the operator P on Lg(g) is 
self-adjoint. In this case the spectrum of P ~ 1 ~ lies in the interval [ -  1, 1 ], 
and the mass gap (or L 2 spectral gap) is, by definition, the distance of this 
spectrum from the point 1. For convenience we introduce the operator 
/3_= I - P  and discuss the spectrum of /3 ~ 1 a near 0. The mass gap is 
therefore 

m -= inf spec(/3 [" 1 z) (2.4) 

Finally, it is not hard to show (ref. 29, Sections V-1 and V-2) that 
given any initial probability distribution :~, there exists a (essentially 
unique) stochastic process {X0, X1, X2,...} satisfying 

P(Xo ~ A) -- c~(A) (2.5a) 

P(X, +1 ~ A IX o,..., Xn) = P(X,,  A) (2.5b) 

for all A e X and all n ~> 0. 
For future use, let H be the expectation operator 

(Hf)(x) = f rc(dy) f ( y )  for all x (2.6) 

Equivalently, H is the orthogonal projection in L2(7~) onto the constant 
functions. 

2.2. Cont inuous Time 

Next let us consider a positive-recurrent, continuous-time Markovian 
jump process with measurable state space (X, Jr), transition rate kernel 
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J(x, dy), and invariant probability measure 72. The total transition rate out 
of state x, 

r(x) = J(x, X) (2.7) 

is assumed to be finite for all x, but it is not necessarily bounded. Thus, if 
the system is in state x at time t, it will wait a random time that is 
exponentially distributed with mean 1/r(x) and then jump to another state 
chosen randomly according to the probability distribution J(x,.)/r(x).  The 
invariance of g means that 

f rt(dx) J(x, dy) = r(y) g(dy) (2.8) 

i.e., the mean transition rate into the state y equals the mean transition rate 
out of it. 

The infinitesimal generator G of this jump process is the signed kernel 6 

G(x, . ) = r ( x ) 6 x -  J(x, . ) (2.9) 

If the transition rates are bounded(say, by some number M), then there is a 
unique semigroup of transition probability kernels {Pt}t ~> 0 generated by G, 
namely 

p t _ e x p ( _ t G ) =  - ~ ( - G ) "  (2.10) 
n=O iv/[ 

a series which is absolutely convergent in the Banach space of bounded 
signed kernels. 7 Moreover, G induces a bounded linear operator (of norm 
~<2M) on L2(rc) [and in fact on all the spaces LP(rc)] by 

(Gf)(x) = f J(x, dy) I f ( x )  - f ( y ) ]  (2.11) 

6 We follow the physicists' sign convention for G, which makes the associated operator 
positive-semidefinite in the reversible case [see (2.11) and (2.14)]. Mathematicians use the 
opposite sign convention, which makes G negative-semidefinite. 

7 Powers of kernels are defined exactly as powers of matrices: G O-- - / ,  where I is the identity 
kernel I(x, �9 ) = fix, and 

Gn(x,B)=- f ... f G(x, dxl)G(xa,dxz)...G(x,_r,B) 

for n/> 1. To see that Pt is indeed a positive kernel, write 

(MI -  G)" 
Pr=-exp(-tM)exp[t(MI-G)]=-exp(-tM) ~ n! 

n ~ O  

(using properties of the exponential function that are valid in any Banach algebra) and note 
that MI-- G >~ O. It is trivial that P,(x, X) = 1 for all x, since G(x, X) = 0 for all x. We learned 
this argument  from ref. 27, p. 152, where it is attributed to John Kingman.  
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Finally, it can be shown (ref. 26, pp. 311-319) that given any initial 
probability distribution c~, there exists a strong Markov process {X,},~>0 
whose sample paths are piecewise-constant and right-continuous with only 
isolated jumps, such that 

P(X o E A) = c~(A) (2.12a) 

P(X, ~ A I {X,}0.<s~ t) -- P,  ,(X,, A) (2.12b) 

for aIl A e ~ and all u >~ t/> 0. 
If, on the other hand, the transition rates are unbounded, then some 

subtleties arise, s From a purely analytic point of view, our goal is to define 
the operator G acting on some suitable space of functions. One approach is 
to try to make sense of (2.11) for functions f in some dense subspace of 
LP(~). We prefer, however, a simpler but more restricted approach based 
on quadratic forms. We assume that the jump process is reversible (with 
respect to lr), i.e., that it satisfies 

zcCdx) J(x, dy) = ~z(dy) J(y, dx) (2.13) 

Then we can define the positive-semidefinite sesquilinear form 

( .  

fq(f, g) = j ~r(dx) J(x, dy) f(x)* [g(x) - g(y)]  (2.14a) 

1 
f re(x) J(x, dy) [ f ( x ) - f ( y ) ] *  [g(x) g(y)]  (2.14b) 

2 

on the form domain 

~(f#)={feL2(rc): f ~(dx)J(x, dy) [ f ( x ) - f ( y ) ] 2 < ~  t (2.15) 

Note that ~(f#) contains the set 

~l(f#)={feL2(n):fr~(dx)r(x) ]f(x),2 < 00} (2.16) 

and so is dense in L20z). We note the following additional facts about f~: 

(a) ~.(f9) is a linear subspace. 

(b) ~(f#) contains the constant functions. 

(c) f~ defined on ~(ff) is a closed form. 

8 The reader uninterested in these subtleties may skim lightly over the rest of Section 2.2. 
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(d) If qS:R--.R has Lipschitz norm ~<K< ~ [this means that 
t ~ ( z ) - q ~ ( z ' ) l < ~ K l z - z ' l  for all z,z'] and f ~ ( ~ q ) ,  then 
q~ o f e  ~(c5) and ~q(~ of, ~b o f )  ~< Ka~(f ,  f ) .  

If f, g e  ~(~q), then f v  g-=max(f ,  g) and f A  g-=min(f ,g)  also (e) 
belong to ~(c~). 

(f) I f f , g e ~ ( f f ) c ~ L ~ ( r 0 ,  then fge.~(~q) and 

N(fg, fg) <% [lifll ~ C~(g, g)1/2 + Itgll ~ (~(f, f)v212 

(g) If f e ~ ( ( r  and f~=-((-n)  v f ) A n ,  then f ~ e ~ ( f f )  and 
l i m , _ ~  ~ ( f , - f ,  f , - f ) = 0 .  In particular, ~(N)c~L~ is a 
form core for (r 

(h) Under the additional hypothesis ~r(x)n(dx)<oe, we have 

(i) Under the additional hypothesis ~ r(x)~t(dx)< c~, the quadratic 
form ff is maximal Markovian, i.e., there does not exist a proper 
extension of ~ that has property (d). 9 

Most  of these statements are easy to prove; see ref. 30, pp. 13 14 and 
25-26. The proof of (i) goes as follows: Let c~, be an extension of ~ having 
property (d), and let f s  ~(~f'). Then 

f~ = ( ( - n )  v f ) ) / x  n e L~ c ~(N) ~ ~(~q') 

and 

N(f~, f~) = cS'(f~, f , )  ~< N'(f, f )  < oe 

by property (d) for ~q'. But 

1 
(r L) = ~ ~ ~(dx) J(x, dy) IL(x)-  L(y)L 2 

1 
~ f ~(dx) J(x, dy) If(x)  - f ( y ) l  2 

by the monotone convergence theorem; hence f e  ~(N). 
Since N is closed and semibounded, it follows (ref. 31, Section VI.2) 

that there is a unique self-adjoint operator G with dense domain N ( G ) c  
~(a3) such that cS(f, g ) =  (f, Gg) for all f e ~ ( ~ )  and ge~(G).  Moreover: 

(a') @(G) is a form core for ~. 

9 We do not know whether ~ is maximal Markovian if S r(x) n(dx) = Go. 
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(b') g e ~(G)  if and only if there exists h e L2(~) such that N(f, g ) =  
(f, h) holds for all f in some form core for N; and in that case 
Gg=h. 

(c') G is positive-semidefinite, ~(G1/2)=~(~) ,  and N ( f , g ) =  
(G1/2f, G'/2g) for all f ,  g e  ~((q). 

(d') A linear subspace is a form core for ~ if and only if it is an 
operator core for G 1/2. 

It appears to be a difficult problem to describe exactly the operator domain 
~(G). However, it does follow from (b') that the set 

is contained in @(G), and that for f e ~ l ( G )  we have Gf given by (2.11) 
[that is, the right-hand side of (2.[1) is absolutely convergent for r~-a.e, x 
and equals (Gf)(x)]. Anyway, most of our work can be done using only 
the quadratic form N. 

Since G is positive-semidefinite, its spectrum lies in the half-line 
[0, oc). The constant function 1 belongs to ~I(G)c ~@(G) and is an eigen- 
vector of G with eigenvalue 0. The goal of this paper is to prove bounds 
on the spectrum of G ~1 • and in particular to show that in certain 
circumstances there must be spectrum very near 0. We define, therefore, the 
mass gap 

m = inf spec(G [" 1 • ) (2.18) 

The main theorems of this paper are upper bounds on the mass gap. 
From a purely analytic point of view, this is all we need: our main 

theorems are operator-theoretic statements about G (or ~). However, the 
motivation for studying this particular operator comes from probability 
theory: G is allegedly the infinitesimal generator of a Markovian jump 
process. We now turn, therefore, to the problem of constructing this 
process and ascertaining its properties. We temporarily drop the 
assumption of reversibility, as it is not needed. 

It is, in fact, straightforward to construct the jump process {X,},~o, 
using the description in terms of exponentially distributed waiting times 
followed by jumps (see ref. 25, Section 1.12 or ref. 26, pp. 362-369). But 
since the rate function r is unbounded, there arises the possibility that the 
system could make infinitely many jumps in a finite time ("explosion"), 
after which the evolution would be undetermined: in the so-called "minimal 
process," the system simply "dies," but there exists a continuum of other 
possibilities in which the system is "reborn" (see ref. 26, pp. 363-364 or 

822/51/5-6-I2 
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ref. 27, Section 6.5). Corresponding to each such process is a semigroup 
{P,},~>0 of kernels with generator G, which may, however, be substochastic 
rather than stochastic [i.e., P,(x, X)<<. 1]; the minimal such semigroup, 
denoted {P~},~>0, is the one corresponding to the minimal process (see 
ref. 26, pp. 364-366 and ref. 27, Section 7.5). 

The details of the construction are as follows: Define 

fJ(x, dy)/r(x) if r(x) > 0 
Y(x, dy) ~x 

[6x(dy ) if r(x) =0  
(2.19) 

Then Y is the transition probability kernel for a discrete-time Markov chain 
{-~o, X1 .... }; we write Ex for expectations in this Markov chain with 
2o = x. Next, let to, zl ,... be exponentially distributed random variables of 
mean 1/r(X-o), 1/r(X-1),..., which are conditionally independent given 
{-~o,X~,...}. Define To=0, T , = Z ~ - ~ z ~ = t i m e  of nth jump, and 
T~=Z~=0z~=t ime of first explosion (if any). Then we can define a 
continuous-time process (the "minimal process") by 

{~.  if Tn<~t<T.+ 1 
X,  = if t >~ Too 

(2.20) 

where 0 ~ X is the "cemetery" state. It can be shown (ref. 25, Section 1.12) 
that {X,},~>o is a strong Markov process. The minimal semigroup {P,},>~o 
is defined by 

(Ptf)(x) = Ex[z(t < Too) f (X,)]  (2.21) 

and the minimal resolvent {/~x}~.>o by 

Ra = fo  dt e-XtPt (2.22) 

A crucial role will be played by the identities 

r(x) f J(x, dy) f(y) Ex[e-~Tl f( '~l)] = r(x) +----~ 

- f Yz(x, ely) f ( y )  (2.23) 

and more generally 

Ex[e-~r"f(Xn) ] = f .7~(x, dy) f ( y )  (2.24) 
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for 2 ~> 0, which may be derived straightforwardly from the definition of the 
process. Here we have defined for each 2 ~> 0 the subprobability kernel 

1 
Y).(x, dy) = - -  J(x,  dy) (2.25) 

r(x) + )~ 

which will play an important role in our development (see also ref. 32, and 
ref. 33, pp. 217-226). 

The following proposition gives some necessary and sufficient 
conditions for the nonoccurrence of explosion: 

P r o p o s i t i o n  2.1. The following are equivalent (in order to save 
space, equivalent alternatives are shown in brackets): 

(a) For every initial state x, the probability of having infinitely many 
jumps in a finite time interval is zero, i.e., Ex[z(To~ < oo)] = 0  for 
all x. 

(b) The minimal semigroup {/5,},~> o is stochastic, i.e., P,(x,  X ) =  1 
for all t, x. 

(c) There is at most one substochastic [or stochastic] semigroup 
{ Pt}t>~o satisfying P,(x,  A)  = ZA(X) -- tG(x, A)  + o(t) as t -4 0 for 
all x, A. 1~ (This unique semigroup is, of course, {Pt}.) 

(d) In the discrete-time Markov chain {)~o, 21 .... } with transition 
probability ,7, we have, for every initial state x, 

1 - o o  
.=o r ( L )  

with probability 1. 

(e) For some [or all] 2 > 0 ,  we have l im,~oo(J~ l ) (x)=0  for all x 
(not necessarily uniformly). 

(f) For some [or all] 2 > 0 ,  the only bounded measurable [or 
nonnegative bounded measurable] solution to the equation 
(2 + G ) f =  0 is the zero function. 

S k e t c h  o f  proof.  (a )c~(b)  is immediate by definition of P,. 
(b) ~ (c) follows from the minimality of Pt, while ( c ) ~  (a) follows by the 
construction of a continuum of distinct stochastic semigroups whenever (a) 
fails (see ref. 26, pp. 363-364 and ref. 27, Sections 6.5 and 7.5). ( a ) ~ ( d )  
holds because the waiting times % are (conditionally) independent 

1o Note that this asymptotic expansion is not required to be uniform in x. It does turn out, 
however, to be uniform in A for each fixed x (ref. 23, p. 330). 



918 Sokal and Thomas 

exponentially distributed random variables of mean 1/r(-~n), and it can be 
o e  .[7 shown that ~n=0 , is finite or infinite (with probability 1) according as 

~ = 0  [1/r(Xn)] is (see ref. 27, pp. 153-154, Lemma 5.33). Finally, for each 
2 > 0  define f~(x)=-Ex[eXp(-2Too)]. By the dominated convergence 
theorem and (2.24), we have 

A(x)=  lim Ex(e-:~T")= lim (,7~l)(x) 
n ---* n o  n ~ o o  

This proves (a ) .~  (e). Now, clearly, 0 ~<fa ~< 1, and it is not hard to show 
that (2 + G)fa = 0; this proves ( f ) ~  (a). Conversely, it can be shown that 
for any function f satisfying ( 2 + G ) f = 0  and - l ~ < f < ~ l ,  we have 
- f x  <~f<<.f~ (see ref. 26, pp. 367-368); this proves (a) ~ (f). | 

The next three propositions give simple sufficient (but not necessary) 
conditions for the nonoccurrence of explosion: 

P r o p o s i t i o n  2.2. Let the state space X be countable, and consider 
the discrete-time Markov chain with transition matrix J. If, in this chain, 
every state is recurrent, then the continuous-time process has no explosion. 
In particular, this occur if r(x) 7z(x) > 0 for all x and ~x  r(x) 7z(x) < oe. 

Proof. If ~'o=X, then recurrence means that infinitely many of 
the X, equal x (with probability 1). This implies condition (d) of 
Proposition 2.1. 

On the other hand, it is easy to check that 77 = rTr is an invariant 
masure for the chain with transition matrix Y [this is equivalent to (2.8)]. 
If 77 is a finite measure that gives nonzero weight to every state, then the 
state space consists only of positive-recurrent classes (ref. 22, Theorems 
1.7.1 and 1.7.2), i.e., every state is positive-recurrent. II 

Proposition 2.3. Let 0 be a nonnegative measurable function on 
the state space X, such that: 

(a) r is bounded on each set {x: 0(x) ~< K}. 

(b) ~ J(x, dy)[O(y)-  0(x)]  ~< C0(x) for some constant C. 

Then the continuous-time process has no explosion. 

Heuristic explanation. Formally, hypothesis (b) implies that 
(d/dt) E(O(X,)) ~< CE(O(X,)), so that E(O(X,)) <~ eC'O(Xo). Morally, this 
means that the "Liapunov function" O cannot become infinite in a finite 
time--so, by hypothesis (a), neither can r--hence there is no explosion. 
However, more careful consideration shows that it is not enough to look 
only at expectations; instead, we will prove the stronger result that 
{e c'o(X,)},>~o is a supermartingale, hence almost surely bounded. For 
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technical resaons, it is convenient to work instead with the discrete-time 
Markov chain {(-go, 0), (.g~, to), (22, r~),...} consisting of the states visited 
and their holding times. 

Proof. Hypothesis (b) says that 

F40(2~+~)12o,... ,2~,~o,... ,~_~)<. 1 r(2,)  + - -  0 ( 2 , )  (2.26) 

On the other hand, we know that 

E(e-~"12o  ..... 2~ , ro  ..... vn_l) = 
r(~'~) 

(2.27) 
r(2.)  + ;~ 

for all 2~>0. Moreover, X ,+ l  and rn are independent conditionally on 
-go,..., -gn, %,..., ~ , -  i. Taking 2 = C, we conclude that 

is a supermartingale. Since 0 (Xo)<  o% it follows by standard martingale 
theory (Ref. 34, Proposition II-2-7) that 

s u p 0 ( 2 n ) e x p  - C  ri <oo  a.s. 
n > ~ O  i = 0  

If Z ~ = o V i < ~ ,  this means that supn>o~(X'~)<oo,  and hence, by 
hypothesis (a), that sup ,>o r ( .~ , )<oo ;  but this would imply (as noted 
previously) that in fact ~2i~_o vi = oo a.s., a contradiction. We conclude that 

oo %. - -  Zi=o ~-  ~ with probability 1, i.e., there is no explosion. | 

Remark. This proposition was inspired.by ref. 35, p. 263, Problem 
4.11.15(c) and by ref. 36, Theorem 10.2.1. See also ref. 37. 

P r o p o s i t i o n  2.4. Assume that the state space can be partitioned as 
X = U,T= l )(,,, where J(x, J(,) = 0 whenever x ~ Xm and n > m + 1. Assume 
further that 

with 

sup J(x, km+l)~M,~ 
x ~ a'? m 

L 1 
m = 1  a - - ~  = o o  (2.28) 

Then the continuous-time process has no explosion. 
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ProoL This is a corollary of the preceding proposition: just take 

m_l~ll ( lq-C = 

for x e "~m' Alternatively, it is easy to show directly that these hypotheses 
imply condition (d) of Proposition 2.1; the details are left to the reader. | 

Example (Birth-death process). Let X={0,1,2,.. .} and let 
J(x ,  x +  1)=2x, J(x ,  x - 1 ) = / L , .  Assume for simplicity that all 2x, #x>0. 
Then the unique invariant measure is given by 

2 o 2 1 '  " " / ~ x -  1 ~x ~ ~0 
#1#2""#x 

(in fact, J reversible with respect to re). We have the following necessary 
and sufficient conditions (see ref. 26, pp. 368-369 and ref. 22, Section 1.12): 

(a) No explosion .=-Z,~=0 (1 /2 ,n , ) (n~  + n , _  l + "'" + no) = ~ .  

(b) Recurrence of discrete-time chain .=-Z,~=o ( 1 / 2 , n , )  = ~ .  

(c) Positive-recurrence of discrete-time chain . ~ =  0 2,n,  < oo. 

(d) Condition of Proposition 2.4 .r (1/2,) = oo. 

Clearly, ( c ) ~  ( b ) ~  (a) and ( d ) ~  (a), as required by Propositions 2.2 and 
2.4, although these implications are in general far from being sharp. [-Note, 
however, that ( a ) ~  (b) if the invariant measure n is finite.] 

Further discussion of what happens in the event of "explosion" can be 
found in refs. 22, 27, 32, and 38-41. In this paper, however, we restrict 
attention to models in which there is no explosion. 

The next step is to verify that the semigroup {P,},~o has all the 
desired properties: 

Propos i t ion  2.5. Let f be a bounded measurable function, and 
fix x~ X. Then ( P , f ) ( x )  is a continuous function of t for t >/0. In fact, 
( P , f ) ( x )  is a differentiable function of t and satisfies the backward 
Kolmogorov equation 

d 
at  ( P t f ) ( x )  = - ( G f i J ) ( x )  (2.29) 

where the action of G on bounded measurable functions is defined by 
(2.11). 

ProoL See ref. 23, pp. 331-336. | 
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Proposition 2 . 6 .  Assume that there is no explosion, and let rc be a 
probability measure satisfying S r(x) z(dx) < co. 

(a) Suppose that z satisfies the infinitesimal invariance condition 
(2.8). Then the (unique) semigroup {P,},>~0 leaves 7r invariant, i.e., 

J ~ zc(dx) (Ptf)(x) = f rc(dx) f(x) (2.30) 

for all t/> 0 and all bounded measurable functions f 

(b) Suppose that zc satisfies the infinitesimal reversibility condition 
(2.13). Then the (unique) semigroup {P,},~o is symmetric with respect to 
~z, i .e . ,  

J f ~r(dx) (P,f)(x) g(x) = f 7r(dx) f(x) (P,g)(x) (2.31) 

for all t >~ 0 and all bounded measurable functions f, g. 

ProoL (a) Let f be a bounded measurable function; then for the 
resolvent Ra (2 > 0) we compute 

(n;J)(x)= dte ~tEx[Z(t< Too)f(X,)] 

= ~ Ex dt e-;~tf(2,) 
n = 0  k "jTn 

1 o~ 
=~ ~ Ex[e-ar"(1-e-;'~")f(X,)] 

n = O  

~ f  r(y)l = YT(x, dy) ,~+-----sf(Y) (3.32) 
n=o 

where in the last step we used the identity (2.24). Now multiply both sides 
by 2 and integrate with respect to zc(dx). From (2.8) we easily derive the 
identities 

2r~Y~. = rr~ -- (rzO,7;, (2.33) 
and hence 

2zrY~ = (rTr),7~ ~ - (r~r),7~ (2.34) 

for n ) 1. Substituting (2.34) into (2.32) and telescoping the sum, we obtain 

1 
2 f zr(dx)(R,J)(x)= f ~(dy) f ( y ) -  2ira f ~(dx) r(x) Y~V(x, dy)r(y) +--'--~ f(Y) 

(2.35) 
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Now, by the absence of explosion, we have limN_~ ~ yUg = 0 pointwise for 
every bounded measurable function g [-see Proposition2.1(e)]; and of 
course [lyUgk[ ~ <~ 1] gll ~. Since rn is by hypothesis a finite measure, the final 
term in (2.33) vanishes by the dominated convergence theorem. By the uni- 
queness theorem for Laplace transforms, it follows that (2.30) holds for 
almost all t >/0. But then Proposition 2.5 and the dominated convergence 
theorem imply that (2.30) holds for all t >~ 0. 

(b) By (2.32) we have 

f n(dx)(R~f)(x) g(x) 

= n(dxo) J(xo, dxl)" 'J(Xn-l ,dX,)g(xo)f(x , )  ~I r(xi)+,~ 
n = 0  i = 0  

(2.36) 

On the other hand, by repeated use of the infinitesimal reversibility 
condition (2.13), we have 

rt(dxo) J(Xo, dxl) ... J(xn_ 1, dxo)= ~(dx,) J(x,,  dx,_ 1)'" J(xl, dxo) 

(2.37) 

as measures on X ~ + 1. These two facts together imply (2.31). I 

Remark. Proposition 2.6 can alternatively be proven by random time 
change starting from the continuous-time jump process with jump rates ,7 
(S. R. S. Varadhan, private communication). Proposition 2.6(a) can alter- 
natively be proven using the backward Kolmogorov equation (2.29) 
together with the uniform bound I(P,f)(x)-f(x)l/t <<,2r(x) lLflloo (see 
ref. 23, pp. 331-332 for this bound). See also refs. 42 and 43 for related 
results. 

From now on we assume that ~ r(x)n(dx)< m. It follows from the 
invariance of n, just as in the discrete-time case, that Pt is contractive in the 
LP(n) norm, i.e., 

liP,fib ~(=)~< ]lfl[ z~(,t (2.38) 

for each 1 ~< p ~< co and all bounded measurable functions f (In particular, 
P , f  is n-null whenever f is.) Since the bounded measurable functions are 
dense in LP(n), the semigroup {Pt}t>~o extends by continuity to a contrac- 
tion semigroup on LP(n); in fact, this extended semigroup is given by the 
obvious integral formula 

(Ptf)(x) = f Pt(x, dy) f (y )  (2.39) 
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where the integral is well-defined for ~-a .e .x .  Finally, Proposition 2.5 
together with the dominated convergence theorem and an e/3 argument 
imply that the semigroup {P,},~>o is strongly continuous o n  LP(1"c) for 
1 ~< p < oo (though not necessarily for p = oo). Thus, this semigroup has an 
infinitesimal generator Gp, with domain ~(Gp) dense in LP(~). 

We now restore the assumption of reversibility. It follows that the 
operator G2 on L2(~) is self-adjoint and positive-semidefinite; we denote by 
~2 the corresponding closed sesquilinear form with -~(ffz)=@(G~/2) �9 It is 
easy to see that if2 is Markovian, i.e., satisfies property (d) above. Now let 
f be a bounded measurable function. Then, by Proposition 2.5 and its 
proof (see ref. 23, pp. 331-332), the quantity [ ( P , f ) ( x ) - f ( x ) ] / t  is boun- 
ded uniformly in t by 2r(x)][fll oo, and as t ~ 0 it converges pointwise to 
- ( G f ) ( x ) .  By the dominated convergence theorem [and using again the 
hypothesis ~ r(x) ~(dx)<  ~ ] ,  we conclude that for bounded measurable 
functions f, g we have 

lira (g' P t f ) L 2 ~ ) -  
l ~ o o  t 

(g, f)L2(.) = / ,  

- J ~(dx) g(x)  (Gf)(x)  

= - f f ( g , f )  (2.40) 

In particular, by taking g = f  and using the spectral theorem, it follows 
[Ref. 30, p. 21, Lemma 1.3.4(i)] that L ~ ( g ) c ~ ( ~ 2 )  and if2 ~L~(g)  = 

~ L~(~).  On the other hand, L~176 is a form core for (q [fact (g) above],  
so it follows that 9 (~2)~  ~ (~)  and if2 P ~( ( r  i f - - tha t  is, r162 is an exten- 
sion of ft. But since ~ is maximal Markovian [fact (i) above],  it follows 
that ~2 = ~q and hence G2 = G. 

This completes our analysis of the continuous-time Markovian jump 
process with generating kernel G. 

Our final topic in this section concerns Dirichlet boundary conditions. 
Consider a reversible Markovian jump process with generating kernel G, as 
at the beginning of this subsection, and let A be a subset of the state space. 
We define G A to be the generator for the process that evolves according to 
G as long as it stays within A, but is killed when it tries to jump outside A: 

G ~(x, . ) = r(x)cSx- J(x, . r A) (2.41) 

This process can be constructed in precisely the same manner as the 
original process; the construction is unique provided that the original 
process has no explosion. Of course, the semigroup {(PA),},~>o is in 
general substochastic. Thus, if {X,},~> 0 is the right-continuous stochastic 
process whose generator is G, so that 

E x [ f  (X~)] = ( P J ) ( x )  (2.42) 
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then we have 

Ex[Z(V Ac > t) f (X, ) ]  = ((P A)J)(X)  (2.43) 

where 

~AC -- inf{ t: X, ~ A c } (2.44) 

is the time of first exit from A. 
If rr(A)> 0, we can make sense of G A as an operator on the Hilbert 

space L2(A, r~). In fact, let ~a be the pos!tive-semidefinite sesquilinear form 

c~A(f ' g ) =  aj(f, ~) (2.45) 

with form domain 

where 

~(NA) = { f  e LZ(A, ~): f e  ~(N)} (2.46) 

~ f ( x ) ,  x e A 
f ( x )  = ~0, x r A (2.47) 

Note that ~(NA) contains the set 

and so is dense in L2(A, n). Then NA determines, as before, a positive- 
semidefinite, self-adjoint operator G A acting on L2(A, n). Moreover, the 
semigroup {(P~)t}t~>o is a strongly continuous, self-adjoint contraction 
semigroup on L2(A, n), and its generator G2, A is precisely G~. 

Finally, note that the transition probability P of a discrete-time 
Markov chain can serve also as the transition rate kernel of a continuous- 
time jump process (the process that waits an exponentially distributed time 
of mean 1 and then jumps according to P). The generator G of this process 
is just t3 =_ I -  P. Thus, it suffices to state our results for the generators G of 
continuous-time jump processes; the analogous results for the operators 
associated with discrete-time Markov chains follow immediately as a 
special case. 

3. UPPER B O U N D S  ON THE M A S S  GAP FOR REVERSIBLE 
M A R K O V  C H A I N S  A N D  M A R K O V I A N  J U M P  PROCESS 

In this section we explain two general principles--the minimum 
hitting-time argument (Theorem 3.1) and the mean (or mean-exponential) 
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hitting-time argument (Propositions 3.3-3.10)--which provide upper 
bounds on the mass gap (L 2 spectral gap) for the generators of reversible 
Markov chains and Markovian jump processes. 

3.1. The  M i n i m u m  H i t t i n g - T i m e  A r g u m e n t  

Let G be the generator of a reversible Markovian jump process with 
transition rates bounded by M, that is, 

r(x)<~M<oo for all x (3.1) 

The boundedness of transition rates is, of course, a rather severe restriction. 
It does, nevertheless, cover many interesting cases, including all discrete- 
time Markov chains (for which M =  1). Clearly, G is a positive- 
semidefinite, self-adjoint operator on L2(~) with spectrum in the interval 
[0, 2M]. 

For any subsets A, B c X, let TAB be the minimum number of jumps in 
which the system can get from A to B with nonzero probability (for a 
~-nonnull set of points in A): that is, 

TAB----rain {n f> 0: Irc(x) zA(x)J"(x,B)>O} (3.2) 

We then have the following result: 

T h e o r e m  3.1. Let G be the generator of a reversible Markovian 
jump process with transition rates uniformly bounded by M, and let m be 
its mass gap. Then 

m~< inf 2Mtanh2 I 1 ([1-~(A)][1-~z(B)]~I/21 
A,BcX 2(TAB-- 1) arccosh ~z(A) re(B) J J 

(3.3a) 

M 4 
~< inf )2 l~ 2 (3.3b) 

A,B=X 8(TAB-- l ~(A) ~(B) 

Proof. Let A, B ~ X, and let p, be a polynomial of degree n < TAB. 
Then 

by hypothesis, and 

(g.A, P,(G)zB) = 0 (3.4) 

pn(G) 1 = p,(0)  1 (3.5a) 

p,(G)* 1 = pn(0)* 1 (3.5b) 
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since G1---G*I =0.  Hence 

(ZA-~(A)I ,  pn(G)[zs-~(B)I])= -~(A)~(B)pn(O) (3.6) 

On the other hand, 

LIp,(G) ~ 11[[ ~ sup Ip,(z)[ (3.7) 
z ~  [ m , 2 M ]  

and hence, by the Schwarz inequality, 

I(zA - ~(A)  l, p . (G)  [ZB - ~(B) 1 ])f 

~< Ilza-rc(A)ll l  HXB- g(O)ll[ sup lp,(z)[ 
z ~  [ m , 2 M ]  

=~(A)I/2[1-=(A)]I/2~(B)I/z[1-g(B)] 1/2 sup [p.(z)h (3.8) 
z E  [ m , 2 M ]  

An easy bound (which is good enough for our applications in Section 4) 
can be obtained by taking p . ( z ) =  ( 1 - z / 2 M )  ~. B u t w e  can do better, by 
taking p .  to be the polynomial that minimizes SUpze[rn, Zm] Ipn(Z)/pn(O)[. 
That is, we take 

where 

T (2M+m-2z ' ]  
p~(z)=constx " \  2 M - r n  ~/ (3.9) 

~'cos(n arccos ~) - 1 ~ ~ ~< 1 (3.10) 
T.(~) = (cosh(n arccosh ~) I~l >~ 1 

is the nth Chebyshev polynomial. We then have 

pn(z) 1 
sup = (3.11) 

~Em.2~t~ ~ cosh{n arccosh[(2M+m)/(2M-m)]} 

(see, e.g., ref. 44). Combining (3.6), (3.8), and (3.1t) and letting 
n =  TAB--1, we arrive after some algebra at (3.3a). The elementary 
inequalities tanh x ~< x and arccosh x ~ log(2x) then yield (3.3b). | 

Remark. The statement and proof of Theorem3.1 are purely 
analytic: they make no reference to the underlying stochastic process. 

Theorem 3.1 says that if the minimum number of jumps to get from A 
to B is large, and this is not justified by the rarity of A and/or B in the 
invariant distribution--here the "justifiable" time is of order 
log[1/~(A) ~(B)] - - then  the mass gap must be small. 
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Examples. 1. Symmetric random walk on {0,..., N} with reflecting 
boundary conditions. The transition matrix is 

P(0, 1)= 1 (3.12a) 

P(N, N -  1)= 1 (3.12b) 

P(x ,x -1 )=P(x , x+l )= �89  for l<<.x<~N-1 (3.12c) 

The exact mass gap is m = 1 - cos(Tz/N) ~ 7z2/2N 2. If we take A = {x: x ~< i} 
and B =  {x: x>~j} with i<j, then Theorem 3.1 yields the bound 

1 4N 2 
m ~< 8 ( j -  i -  1) 2 l~ ( i+  1/2)(N-j+ 1/2) (3.13) 

Clearly, taking i~TN, j ~ ( 1 - ~ ) N  with 0<c~<1/2  gives the optimal- 
order bound m ~< const x N 2. (However, the coefficient is not sharp.) 

2. Random walk with inward drift on Z + ,  with elastic boundary 
conditions at 0. The transition matrix is 

P(x, x+ 1 ) = p  (3.14a) 

P ( x , x - 1 ) = l - p  for x>~l (3.14b) 

P(0, 0)-- 1 - p  (3.14c) 

with 0 < p < i/2. The invariant measure is z(x) = const x [p/(1 - p)jX, i.e., 
it has exponential decay with mean ( N )  = p/(1 -2p), while the exact mass 
gap is m = 1 -  2pl/2(1- p)1/2 (see ref. 3, Appendix A or ref. 45). If we take 
A = {x: x ~< i} and B = {x: x >~ j} with i < j, then Theorem 3.1 yields the 
bound 

1 4 
m ~< 8 ( j -  i -  1)2 l~ 2 flJ(1 - fl'~71) (3.15) 

where O<fl=p/(1-p)< 1. Taking j ~  oe (at any fixed i), we get 

1 log 2 ~ (3.16) m~<~ 

As p--*�89 (i.e., as (N)--* oo), both this upper bound and the exact mass 
gap behave as 2(�89 p)2 + O[ ( �89  p)4], so even the coefficient is sharp! 

In the problems treated in this paper, we will not need the full strength 
of Theorem 3.1, but only the following obvious corollary: 
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Corollary 3.2. Let G be the generator of a reversible Markovian 
jump process with transition rates bounded by M <  ~ ,  and let m be its 
mass gap. If 

inf log[I/re(A) re(B)] = 0  
A , B ~  X TAB 

then m = 0. 

3.2. The Mean (or Mean-Exponential) Hitting-Time Argument 

Let G be the generator of a reversible Markovian jump process with 
state space X (in this subsection we are not assuming that the transition 
rates are bounded), and let A be a subset of X with re(A)>0. Recall that 
G~ is the generator obtained from G by imposing Dirichlet boundary 
conditions on the complement of A. More precisely, G A is the positive- 
semidefinite, self-adjoint operator on the space L2(A, ~) defined via the 
quadratic form 

(f ,  G~f)L2(A,.)= (f, Gf)L2(x,.) (3.17) 

where 

[ f ( x ) ,  x s A  (3.18) 
/ ( x )  =_ to, x r A 

In probabilistic terms, G A is the generator of the process that evolves 
according to G as long as it stays within A, but is killed when it tries to 
jump outside A. That is, if {Xt}~> 0 is the right-continuous stochastic 
process whose generator is G, so that 

E ~ [ f  ( X~) ] = ( d~/d~, e 'c f ) L~(~) (3.19) 

for any initial distribution ~ whose Radon-Nikod~m derivative de/d~ lies 
in LZ(g), then 

E~[Z(z Ac > t) f (X , ) ]  = (de/d~z, e-taAf)L2(A,~ ) (3.20) 

where 

�9 AC -- inf{ t: X, e A c } (3.21 ) 

is the time of first exit from A. 
Finally, we define 

m A ~ inf spec(GA) (3.22) 
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In view of (3.20), ma measures the exponential rate at which probability is 
guaranteed to leak out of the set A. 

Proposition 3.3. For any set A with 0 < n(A)< 1, we have 

m A >~ mn(A c) (3.23) 

Proof. Let feLZ(zr) be supported in A, with j]f]] = 1. Now decom- 
pose f = a l + f  • with f •  orthogonal to 1 in L2(X,g). Then, by the 
Schwarz inequality, 

fa[ = ] ( f  1)1 = I(f, ZA)I ~<rc(A) 1/2 (3.24) 

SO that ilf • It >~ re(At) ~/2. Hence 

( f  GAf)= ( f  Gf)= (f• GfZ)>~m ]lf• ~') (3.25) 

Since f ~  L2(A, 7c) is arbitrary, this proves the proposition. I 

Remarks. 1. This proposition was also proven by Maitre and MusT 
(ref. 46, Proposition4, bound ~ )  in an entirely different context (con- 
vergence proofs for the multigrid iteration in numerical analysis). A slightly 
weaker bound is implicit in the work of Carmona and Klein (ref. 47, proof 
of Theorem 1). 

2. If A c is a one-point set, then the reverse inequality m/> m~ holds 
as a consequence of the rain-max theorem) 4s) More generally, the 
inequality 

m ~> inf m a x ( m A ,  m a c  ) 
A:0< r~(A) < 1 

holds; see ref. 2, Proposition 3.3. 

Proposition 3.3 shows that mA (the exponential decay rate of the 
killing time rAc) cannot be too small if neither 7r(A c) nor the mass gap m is 
too small. Alternatively, it shows that if mA is small and ~(A C) is not too 
small, then the mass gap m must be small. 

The next step is to get an upper bound on m a. From a purely analytic 
point of view we have the following result: 

Proposition 3.4. Let e and c be real numbers, and let h be a 
function (not identically zero) in ~(ff) satisfying 11 

ii Strictly speaking, hypothesis (3.26a) should be interpreted as saying that ff(~b,h)~< 
((~, eh + cgn ) for all functions ~b in ~(ff) that are nonnegative on A and vanishing on A c. Of 
course, if h happens to lie in -~(G), then this statement is equivalent to (3.26a) interpreted in 
the pointwise n-a.e, sense. 
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Then 

Proof. 
form f#A: 

(G - e)h <. c on A (3.26a) 

h ~> 0 on A (3.26b) 

h = 0 on A C (3.26c) 

m A ~ e + c - -  (XA, h) (3.27a) 
(h, h) 

re(A) 1/2 
(if c >/0) (3.27b) 

ffh fl L2~.~ 
~ e + c - -  

Use h as a Rayleigh-Ritz trial function for the quadratic 

f#A(h, h) _ ~(h,  h) <~ (h, ah + CXA) (3.28) 
(h, h) (h, h) (h, h) 

This proves (3.27a). Then (3.27b) follows by the Schwarz inequality 
(ZA, h) ~< IIZA[I Ilhll = ~ ( A )  1/2 Ilhll. II 

There is a variant of Proposition 3.4 in which h need not vanish 
identically on AC: 

P r o p o s i t i o n  3.5. Let e~>0 and c eR,  and let h be a function in 
.~(c~) satisfying (see footnote 11) 

(G - e)h ~< c on A (3.29a) 

h >~ 0 on A (3.29b) 

h ~< 0 on A C (3.29c) 

and such that h+ - m a x ( h ,  0) is not identically zero. Then h+ satisfies the 
hypotheses of Proposition 3.4, so that 

ProoL 

(ZA, h+)  
mA ~< e + c (3.30a) 

(h+,h+) 

r~( A ) ~/2 
~< e + c (if c >~ O) (3.30b) 

IIh + II L=r 

By Lemma 3.6 below, we have h+ r ~(c~) and 

f#((~,h+)<~9(O,h)<~(q),eh+czA)=(q),~h+ +cxa) (3.31) 

for any nonnegative function ~b~.~(f#) that vanishes on A c. Thus, the 
function h+ satisfies the hypotheses of Proposition 3.4. II 
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L e m m a  3.6. Let h~.~(~).  Then h+ ~ ( f r  and 

fg(~b, h+ )~< ~(~b, h) (3.32) 

for all nonnegative ~b ~ 3(c~) that are supported on the set where h/> 0. 

ProoL We already know that h+ e ~ ( N )  [see Section 2.2, fact (d) or 
(e)]. Now let ~b ~ ~ (~)  be supported on the set where h >/0. Then 

~r h + ) - ~ ~(dx) J(x, ay) ~(x) [ h + (x) - h + ( y ) ]  

= f ~(dx) J(x, dy) ~(x) I -h(x)  - h + (y)] 

<~ f ~(dx) J(x, dy) O(x) [h(x) h(y)] i 

- fq(~, h) | (3.33) 

Remark. Lemma 3.6 is a weakened version of a limiting case of 
Lemma 3.8 below. 

The probabilistic interpretation of Propositions 3.4 and 3.5 is given by 
the following: 

P r o p o s i t i o n  3.7.  

(a) Fix c >~ O. The function 

f~c/e~E~Fexp(e~A~]-l] if ~ r  
h~(x)= ~ , , , L , , , ( c E x ( T a c )  if e = 0  

(3.34) 

is nonnegative on A and vanishing on AC; if it is everywhere finite, then it 
satisfies (3.29a) as an equality. 

(b) Let h be any function in ~ (G)  that satisfies (3.29a) and (3.29c). 
Then h(x)<<. [z,(x) for all x. 

ProoL (a) Consider the jump process starting at x e A, and condition 
on the,first jump. By the strong Markov property, we have 

r(x) 
r(-~-efY(x, dy)E>,[exp(erA,)] if e < r(x) 

E.~[exp(~rA,.)] -- (3.35) 
+ o o  if ~>~r(x) 

822/51/5-6-  ~ 3 
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where J(x, d y ) - J ( x ,  dy)/r(x). After some algebra this gives equality in 
(3.29a) for the function h~ (e r 0). A similar computation handles the case 
8--0. 

Let h be any function in the domain of G. Then the random (b) 
function 

;o M(t)=e~ 'h(Xt )+ e~( (G-e)h) (X~)ds  

is a martingale, so by optional stopping we have 

(3.36) 

~ -0 Ac h(x) = E~[exp(ezA.) h(X,A,)] + E x e~S((G - ~)h)(X~) ds 

If h satisfies (3.29a) and (3.29c), the right-hand side is 

(3.37) 

f Ac 
Ex ce ~ ds (3.38a) 

= fi~(x) | (3.38b) 

Thus, for any fixed t, the optimal choice of h in (3.27b)/(3.30b) is the 
mean-exponential hitting time function h,. On the other hand, any function 
h satisfying (3.29a) and (3.29c) serves as a lower bound on the true hitting- 
time function h,. We refer to such a function h as a Liapunov function. 

The physical meaning of Propositions 3.3-3.5 may thus be sum- 
marized as follows: If, for a large (in z-measure) set of states x E A ,  the 
mean (or mean-exponential) time to hit A c is large, then the Dirichlet spec- 
tral gap mA must be small; and if A c is not too small (again in n-measure), 
then the mass gap m must itself be small. 

The final step in our argument is to notice that given a Liapunov 
function h for one value of e, we can form Liapunov functions for values 
~' >/~ and then make an optimal choice of ~'. The key fact is the following: 

L e m m a  3.8. Let I be an interval of the real line, and let ~: I ~  R 
be convex and once differentiable with a first derivative that is bounded 
and globally Lipschitz. Let h ~ ( f # )  with R a n h c L  Then ~ohe~( f# ) ,  
qS'o h ~ ..~(~) ~ L~(n) ,  and 

~#(~b, q~oh) <~c~((~'oh).q~, h) (3.39) 

for all nonnegative ~be~(c~)c~L~(Tr). If, in addition, h e ~ ( G )  and 
r o h e N(G), then 

G(cbo h) ~< (r h). Gh (3.40) 
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pointwise ~-a.e. [We apologize for all the technical complications; the key 
inequality is (3.40).] 

Proof. The hypotheses on q5 imply that ~ o h �9 .~(~4), q~' o h �9 ~(~)  n 
L~ and hence that (qS'o h).  ~b �9 .~(~) [see Section 2.2, facts (d) and (f)]. 
Then 

f J(x, dy) [~(h(x))- ~(h(y))] 

=r (x )  [ qS(k(x))- f J(x, dy) qS(h(y))l 

= ~'(h(x)) f J(x, dy)[h(x) - h(y)]  (3.41) 

where we used first Jensen's inequality on the probability measure J(x, �9 ) =- 
J(x, .)/r(x) and then the convexity inequality q~(a)-~(b)~< ~b'(a)(a-b). 
Now multiply this by ~b(x) and integrate with respect to r~(dx); this proves 
(3.39). 

Now if (3.40) were false, we could take ~b to be nonnegative, not 
identically zero, and supported on the set where (3.40) fails; there exist 
such functions in ~ l (~q)nL~(n)  and hence in ~ (N)nL~(70 .  | 

Remarks. 1. If h �9 ~I(G), then �9 o h �9 ~I(G) c ~(G). 

2. The' inequality (3.40) is true quite generally for generators of 
Marker  semigroups; see ref. 42. 

Now define, for e' ~> e ~> 0 and c, c' >t O, the function 45,,~, : R + --* R + by 

C ~ 

~,~,(z)= ~ exp z - 1  if e ' > e = 0  (3.42) 

C ~ 

c z if e ' = e = O  

(Strictly speaking, we should call this function q~.~,,,..c', but for simplicity 
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we suppress c, c' from the notation.) This function is convex and infinitely 
differentiable, and satisfies the differential equation 

d~b ~,~, _ ~' qS ,~, + c 
(3.43) 

dz ~z + c  

with the initial condition q~,,,,(0)= 0. Unfortunately, ~b,,~ does not satisfy 
the technical hypotheses of Lemma 3.8, because its derivative is not 
globally bounded. So we define cutoff versions of r which grow linearly 
for z > M: 

~ , f ~ , ( z )  for O~<z~<M (3.44) 
q~,~, M(z) 

(~b,,~,(M) + ( z -  M) ~b;,~,(M) for z >~ M 

The function q~,~',M satisfies all the hypotheses of Lemma 3.8 as well as the 
differential inequality 

d~,~,,M <~ e'~b~,~,,~ + c (3.45) 
dz ez + c 

We therefore conclude: 

Let e'~>e~>0 and c,c ' ,M>~O. Let h e ~ ( f f )  satisfy Corollary 3.9. 
(see footnote 11) 

(G - e)h ~< c on A (3.46a) 

h ~> 0 on A (3.46b) 

h = 0 on A c (3.46c) 

Then r �9 ~(f#) and (see footnote 11) 

(G-e ' ) (~ , ,~ , ,Moh)<~c '  on A 

cl)e,d, Moh>/O o n  A 

r = 0 on A C 

(3.47a) 

(3.47b) 

(3.47c) 

Corollary 3.9 has a nice probabilistic interpretation: Let h be the 
function /~ defined in (3.35). Then Corollary 3.9 and Proposition 3.7(b) 
imply that 

he,(x) >~ q~,~,(h~(x))= lim r (3.48) 
M ~ o ~  

But this is precisely the content of Jensen's inequality applied to hitting 
times: 

h~ , ( x ) -  Ex(~b~,~,(F~(~ Ac))) >~ qb~,~,(Ex(F~(~ Ac))) = qb~,~,(h~(x)) (3.49) 
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where 
~(c/e)(e ~z- 1) if ~ 0  

F~(z) =- (cz if ~ = 0 (3.50) 

Thus, Lemma 3.8 and Corollary 3.9 are the analytic expressions of the fact 
that G generates a Markov semigroup, so that the associated hitting times 
satisfy Jensen's inequality. 

In summary: Given a function h satisfying the hypotheses of 
Proposition 3.4 for some particular value of e, we can form functions 
qs,,~,,Moh that satisfy the hypotheses of Proposition 3.4 for values e'~>e. 
For each fixed e' we first let M ~  ~ (using the monotone convergence 
theorem); we then optimize over e'. The result is: 

P r o p o s i t i o n  3.10.  Let e, c, c'>~ 0 and let h be a function (not iden- 
tically zero) in ~(fg) satisfying (3.46a)-(3.46c). Then 

where 

mA <~ inf [~' +c' ~(A)~/2 ] (3.51) 
~'~>~ It~,~, hll L2C~)J 

Ilqs,,~,ohrlc2(~)-- + ~  if ~b,,~,ohCL2(Tr) 

C o r o l l a r y  3.11.  Let E>~0 and let h be a function (not identically 
zero) in ~(fr satisfying (3.46a)-(3.46c) for some c < ~ .  Define 

~max(h) ~ sup{g': ~e,e, o h S Z2(//:) } (3.52) 

Then 

mA <~ emax(h ) (3.53) 

Random walk with inward drift on Z + ,  with elastic boun- 

I - p _  
mA ~< e m a x ( h )  = log P 

Taking j - ~  oe and using Proposition 3.3, we conclude that 

m ~ < ~ - - ~  log ~ --~ 

Example. 
dary conditions at 0. The transition matrix is given by (3.14), the invariant 
measure is rc (x)=cons tx  [ p / ( 1 - p ) ]  x, and the exact mass gap is m =  
1 - 2pl/2(1 - p)i/2. Now fix j~> 0, and let A = {x: x > j} .  Then the Liapunov 
function h(x)= ( x - j ) +  satisfies (3.46a)-(3.46c) with ~ = 0  and c =  1 -  2p. 
Thus, by Corollary 3.11 it follows that 
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as well. Note that as p ~ 1/2, both this upper bound and the exact mass 
gap behave as 2( 1 -  p )2+  O [ ( � 8 9  so even the coefficient is sharp! 

We conclude with a remark which is important in applications. 
Suppose that we have a function h satisfying (G - e)h ~< c on A, but which is 
not necessarily nonpositive on A ~. We then let k be the function 

k ( x )  = Ex [exp(ezA~) h + ( X ~ ) ]  (3.54) 

which solves the boundary-value problem 

(G - e)k = 0 on A (3.55a) 

k = ~ +  on A ~ (3.55b) 

Then h = Tt - k satisfies all the hypotheses of Proposition 3.5, and so can be 
used as a Liapunov function. We refer to ~ as a pre-Liapunov function. It is 
then necessary to obtain upper bounds on k. If mA > e and x~ch+ e N(G), 
then k can be written as 

k = (GA -- e ) - ~ I A G ( z A ~ +  ) (3.56) 

where Ia is the operator of multiplication by ZA; in particular, 

IlkllL2(,~)~ (mA- -  e) t IIIAG(ZAch+)IIL2(~) (3.57) 

4. S T O C H A S T I C  C O N T O U R  M O D E L S  

In Section 4.1 we define our stochastic contour models and verify that 
the continuous-time dynamics is well-defined (i.e., without "explosion"). In 
Section 4.2 we show that if the jump rates grow sufficiently slowly, then the 
mass gap is zero. In Section 4.3 we compare our results with the heuristic 
predictions of Huse and Fisher. (1~ 

4.1. De f in i t ions  

Let X be the space of all simple closed contours ~ (of arbitrary length) 
in Z 2 c R 2 which bound an area containing an origin fixed at (�89 �89 ~ R 2. 
For convenience, we assume that X also contains the null contour 7 = ~ .  
Thus, a nonnull contour 7 is made up of unit-length segments between 
integer lattice points; and since 7 is simple, a lattice point on 7 has precisely 
two such segments hitting it. We denote by 171 the length of 7. Let a ,  be the 
number of contours of length n; then it is not hard to show (49) that 

/~ = lim u,,-1/" (4.1) 
t / ~ o o  

n e v e n  
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exists and lies between 2 and 3 (in fact, it equals ~49) the connective constant 
for self-avoiding walks on Z2). 

Now, for real fl, define the partition function 

Z(f l )=  ~ e -~M (4.2) 
y c X  

Clearly, Z(fi) is finite for all fl greater than the critical point 

/~c -- log # (4.3) 

(it is possibly finite also at/~c). Whenever Z(fl) is finite, define a probability 
measure ~z~ on X by 

~,~(y) = Z(lJ)- l  e -~lTi (4.4) 

From now on we f i x / / >  fl~. 
The next step is to define a reversible Markovian jump process with 

state space X, having r~ as its (unique) invariant measure. The jump rates 
J(7, 2') are assumed to satisfy the following two conditions: 

(a) Local motion condition. J(7, 7') = 0 unless 7 A ?' is the perimeter 
of a unit lattice square. 

(b) Detailed balance condition. For all 7, Y' ~ X, 

r~/~(7) J(7, 2') = ~e(7') J(7', 7) (4.5) 

Provided that the jump rates do not grow too fast as 171--+ 0% this 
stochastic process is well-defined: 

Propos i t ion  4.1. Assume that there exist constants C < a z  and 
e > 0 such that 

J(7, 7') ~< C exp[(fi -/~c - e)171 ] (4.6) 

for all 7, 7'. Then there is no explosion. 

Proof. By the local motion condition, the number of contours y' that 
are accessible from a given contour 7 grows at most linearly in [Yr. The 
claim is then an immediate consequence of the last sentence of 
Proposition 2.2. | 

Under the hypothesis of Proposition4.1 (which we assume hence- 
forth), there is a well-defined reversible Markovian jump process, with 
invariant measure ~e, whose generator G on the space L2(=~) is given by 
the quadratic form 

1 
(f, G f ) = z  ~. =t~(?)J(?, 7 ' ) I f (Y ' ) - f (Y) [  2 (4.7) 

2"2 ,  7 ' 
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4.2.  A b s e n c e  o f  M a s s  Gap  

Our main result is that if the total jump rates r(y) -- j(;), 7') grow 
slower than linearly in the length of the contour as I~1 -* ~ ,  then G has 
zero mass gap. More precisely: 

T h e o r e m  4.2. Let f l>  tic, and assume that the jump rates satisfy 

1 
lim - sup ~J (7 ,  ~ ' ) = 0  (4.8) 

n ~  n b / l = n  y' 

Then G has zero mass gap, i.e., 

m -= inf spec(G ~ 1 • = 0 (4.9) 

We note that this theorem has an immediate application to certain 
discrete-time Markov chains analogous to the continuous-time jump 
process defined above. Suppose that the jump rates for G satisfy 

r(7) - ~, J(7, 7') ~< Ko (4.10) 
y' 

for some constant Ko independent of 7. Then we can define a reversible 
discrete-time Markov chain with transition matrix 

1 
P = I - ~ f  G (4.11) 

for any constant K~> Ko. Since (4.10) implies (4.8) (it is roughly one power 
of n stronger), we conclude that: 

C o r o l l a r y  4.3. Let fl > tic, and assume that the jump rates satisfy 
(4.10). Then G has zero mass gap. Moreover, the discrete-time transition 
probability P defined by (4.11) also has zero mass gap, i.e., 

sup spec(P l" 1 ~) = 1 (4.12) 

To give the flavor of our methods, we first prove Corollary 4.3 (this 
proof is considerably simpler than that of Theorem 4.2). The main tool is 
the minimum hitting-time argument, Theorem 3.1. Let An be a one-element 
set consisting of a single square contour ~ of side n (so that lTn[ = 4n), and 
let B be the one-element set consisting of the null contour ~ .  Because of 
the local motion condition, the area d ( 7 )  bounded by the contour 7 can 
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change by at most one unit in each jump; so at least n 2 jumps are required 
to pass from Yn to the null contour. Thus, by Theorem 3.1 we have 

1 1 ( 4Z(fl) 2 ) 
m ~< infg Ko (rt2 _ 1 )2 l o g  2 \exp( - /~ 17.1 )] 

1 1 infg Ko (/./2 _ 1)2 log2[ 4Z(fl)Z e4l~'] 

= 0  (4.13) 

The point is that it takes a minimum of n 2 jumps in order to get from 7~ to 
G~ (or vice versa), but only a time of order log rc(yn) ,~ n is "justified" by the 
rarity of ?n in the invariant measure ~r. This simple geometric fact is at 
heart of the absence of mass gap for this class of stochastic contour models. 

We now turn to the proof of Theorem 4.2, which is considerably 
deeper than Corollary 4.3. The main tool is the mean hitting-time argument 
(Proposition 3.10). 

The pre-Liapunov function ~(~) will be taken to be essentially the area 
d(7) ,  as suggested by our proof of Corollary 4.3. However, since the total 
rates r (y ) -Y~ , j (7 ,7 ' )  may be unbounded as I?l + c ~ ,  there arises the 
possibility of a fast "back road" from ?n to a short contour, by passing 
through a set of very long contours with not so large area. We will rule out 
this possibility by showing that such transitions are rare. 

Let 7n be a square contour of side n [so that [?nJ =4n  and 
aC(y~)=n2]. Next, for fixed 6 > 0  (its value will be determined below), 
define 

Sn = {y: ag(?) ~< �88 2 } (4.14a) 

Tn = {7:'1~1/> 4(1 + 6)n} (4.14b) 

An = Xk(Sn w "In) (4.14c) 

Clearly, ?n ~ A.. Recall that GA. is the operator on L2(An, ~) obtained from 
G by imposing Dirichlet boundary conditions on the complement of A n, 
and that rA~ " is the (random) time of first escape from A n. We shall write 
mn= rnA. = inf spec GA~ Finally, let us define 

r n -  sup ~,J(Y, ~') (4.15) 
t~l=n y, 

The crucial estimate is the following lower bound on the expected 
escape time for ~;(t) to leave An: 
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Lemma 4.4. Let fl>flc, and assume that the jump rates satisfy 
(4.8). Then, for 6 and n sufficiently large (how large depends on fl), the 
escape time rA; for 7(t) to leave A, satisfies 

E~.(r AC) >~n-~, (~ n2--mC-~ c7 ) (4.16) 

where cn ~ 0 as n ~ oo (cn depends on fi and on the rates j), and 0 < C a < 1 
(c and C 1 depend only on fl). 

Proof. Let 7 E An; then the hypothesis (4.8), the definition of An, and 
the local motion condition together imply that 

I(Gd)(w)l ~ ~ j(~, w')1~(7')- ~r 
7' 

=Y~J(7, 7') 
7' 

[71 

~< (1 + 6) nc,, (4.17) 

for some constant cn that tends to zero as n --* o% where in the last step we 
have used that 2n < 171 < 4(1 + 6)n for 7 ~ An. {This is a consequence of the 
isoperimetric inequality for lattice contours, 171 ~>4d(Y) m. Alternatively, 
one could use the usual isoperimetric inequality, [71 ~> [ 4 n d ( 7 ) ]  m, with 
only a slight weakening of the constants. } 

So we use the pre-Liapunov function 7;(7 ) = d ( 7 ) -  �88 2. Clearly, ~ ~> 0 
on An. Note that h <~ 0 on Sn, but not on T,. Therefore, in accordance with 
the discussion at the end of Section 3.2, we need to estimate the function 

kn(7) -~ E~[~+ (7(~Ac))] = E~[(ZTo~ + )(7(r ~))] 

which solves the boundary-value problem 

(4.18) 

Gk n = 0 on A n (4.19a) 

k n = ~ +  =Zr ,~+  on A,] (4.19b) 

Provided that mn > 0, we can write this solution as 

kn = (G An) - I  I~. GIT h + (4.20) 
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where 

(IAoGIrh + )(~) = ~ j(y, 7 ' ) [ d ( 7 ' )  - ~n 2] + 

<<. ~ j (~ , ,7 ' ) ( l+6)Zn(n+l)  (4.21) 
y'~Tn 

for 7 ~ A.,  where we have used the isoperimetric inequality ~r [7'[2/16 
together with the fact that [ 7 ' j < 4 ( l + 6 ) n + 2  if T e A .  and j(~/ ,7 ' ) r  
Clearly, 

(IA. GIT.~+ )(7) ~< (1 + fi)2nZ(n + 1)c. ------ (1 + 6)2n3c'. 

for all 7, and 

(IA.GIv.h+)(7)=O 

unless 4 ( 1 + 6 ) n - 2 ~ < [ 7 1  < 4 ( 1 + 6 ) n .  Moreover, since fl>]3~, we know 
that there exists a constant 0 < Co < 1 (depending on/~) such that 

z~({~: [7[ = n}) ~< C~ (4.22) 

for n sufficiently large. It follows that 

[IIA GIT~ + ]j2 L2( An, ZQ 

~< (1 + fi)4n6C'n2~B({y ~ A n" 4(1 + 6)n - 2 ~< [Vl < 4(1 + fi)n}) 

~< (1 + 6)4n6c'~'2C~ (1 +~)~ (4.23) 

sufficiently large. Combining (4.23) with (4.20) and the Schwarz for  ?l 

inequality, we get 

k.(7.)  =- ~(7.)-~(6~.,  ( G a.)-i  IA.GIroh + )C2(A.,~) 
n3 rt 

~< (1 + 6) 2 n-c. ~t~(7.)_1/2 C2( 1 +~). 
m n  

Fl3 C tt 
~< (1 + 6) 2 "" -" Z(~)I/2Cg(1 +~)"e z~" (4.24) 

m n  

We now pick 6 large enough so that 

C~+~e ~ < 1 (4.25) 

Then, by enlarging 6 slightly, we can summarize (4.24) a s 

k.(7. ) ~< --c-c C 7 (4.26) 
m n  
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for n sufficiently large, where c and C1 are independent of n (but of course 
dependent on //) and 0 <  C1 < 1. It follows that the Liapunov function 
h = ~ - kn satisfies 

Gh<~(l+c~)nc. o n A .  (4.27a) 

h ~< 0 on A,~ (4.27b) 

3 n (4.27c) h(7. )>~4n 2 _  c C1 
m n �9 

Then Proposition 3.7(b) yields (4.16). I 

Proof of Theorem 4.2. We use the function h(y)= ho(7 )= E~( vA~) in 
Proposition 3.10. Clearly 

II r ,~ hll L2{.) >1 ~(7.)1/2 q~o,~'(h(7.)) 

1 {expFs 'h (7 . ) ] -  1 } (4.28) = Z(/~) -1/2 [exp( - 2/~n) ] --7 

so that Proposition 3.10 yields 

m. ~< inf e'(1 + Z(~)l/2[exp(Z~n)]{exp[e'h(yn)] - 1 } -1) 
~'~>0 

~ < ~  C(/~) (4.29) 

by taking e ' =  2~n/h(yn). Thus, by Lemma 4.4, 

/3  c -2 \ 1 
mn ~< const(/~)x Cn ~-~---~. C'~n ) (4.30) 

for n sufficiently large. Solving for m.,  we get 

m, ~< const(/~) • (c n + CTn 2) 

~ 0  as n ~ o o  (4.31) 

On the other hand, by Proposition 3.3, 

m n  m n 
m ~ ~(A,,) <~ ~-(-~= Z(fl)m,, (4.32) 

for all n. Hence m = 0. II 
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Remarks. 1. Consider the case in which the jump rates satisfy a 
bound j(7, 7')~< C (uniformly in /~), so that the total rates r(7) grow at 
most linearly in 171- Then, imitating the above analysis leads to a mass gap 
estimate m ~< const x/~. In fact, a much more careful analysis exploiting 
cancellations in (4.17) leads to an estimate m~<constx/~e -4~. We conjec- 
ture that the mass gap is identically zero, at least for/3 sufficiently large, but 
we are at present unable to prove this. 

2. Numerous variants on our model can be treated by similar 
methods. For  example: 

(a) One can allow an arbitrary finite repertoire of local moves. This 
means that the local motion condition is replaced by: There exists a finite 
set ~ of closed contours such that J(7, 7') = 0 unless 7 A ~' is a translate of 
a member of N. 

(b) One can consider Peierls contours in Z d, d >  2. These contours 
would be closed surfaces in d =  3, closed hypersurfaces in d = 4 ,  etc. The 
function d ( ~ )  now denotes the volume in Z a enclosed by 7. 

(c) One can consider the BFACF ~u 14.v) dynamics for self-avoiding 
walks with fixed endpoints x, y in Z a for any dimension d~> 2. Now ~r 
denotes the minimal area of a surface bounded by 7o7", where 7" is some 
fixed path from y to x. The primary application of the BFACF dynamics is 
as a discrete-time Monte Carlo algorithm: in this case the total rates r(7) 
are bounded by 1, and the absence of mass gap follows from Corollary 4.3. 

(d) By similar methods one can consider the Sterling-Greensite (15-2~ 
dynamics for self-avoiding surfaces with fixed boundary in any dimension 
d~>3. 

4.3 .  D i s c u s s i o n  

Huse and Fisher ~1~ argue that in the Glauber dynamics ~8'9) for the 
Ising model at low temperature, the temporal autocorrelation function of a 
single spin 

cz(t)- (~i(o)a;(t)>- (,~>2 (4.33) 

(taken in a pure phase, e.g., the + phase) should exhibit the following 
asymptotic behavior as t--* m: 

t exp[--(t/r)(a-l)/2], 1 < d < 3  
Ci(t).-~ t -p e x p ( - t / r ) ,  d =  3 (4.34) 

exp( - t/z), d> 3 
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In particular, for 1 < d <  3 they predict that the low-temperature Glauber 
dynamics has zero mass gap. 

Their argument is based on a consideration of droplet fluctuations 
that contribute to Ci(t). They first assume that the temperature is low 
enough so that droplets are dilute and hence noninteracting. This amounts 
to approximating the Glauber dynamics (which can be thought of as a 
dynamics for a gas of interacting Peierls contours) by a single-contour 
dynamics of essentially the form considered in this paper, with jump rates 
j (7 ,7 ' )=1  for d ( 7  A 7 ' )=1  [hence total jump rates r(7)~[7[].  The 
Huse-Fisher argument for the single-contour model then goes as follows: 

Suppose that initially the contour is very large ([71 >> the mean value in 
the equilibrium distribution 7z~) and roughly spherical. Then its radius r is 
claimed to evolve roughly according to the Langevin equation 

dr 1" q(t) 
~ " ~  - r  + r~a- 1)/2 (4.35) 

where F is a constant and r/(t) is white noise. The first term is the deter- 
ministic motion of the contour in response to its own surface tension, as 
discussed some years ago by Lifshitz(5~ the second term is the stochastic 
part of the evolution, averaged over the contour. Let us consider first only 
the deterministic evolution 

dr/ dt ~ - F/r (4.36) 

Under this evolution, a contour of initial radius ro will survive for a time of 
order r~ before becoming "small" (or empty). Otherwise put, only contours 
of initial radius greater than about t 1/2 will survive for a time t. On the 
other hand, the equilibrium probability of a contour of radius r0 is 
~exp(-crdo-1).  Thus, the autocorrelation function 

CFF(t ) =-- (F(0) F(t)  ) - ( r )  2 (4.37) 

for the observable F ( Y ) = Z ( 7 r  (or any similar observable) should 
receive a contribution of order exp[ - const x t ~a- ~)/2] from large 
contours.12 If d <  3, this contribution is larger (as t ~ oo) than the usual 
exponentially decaying fluctuations; assuming that this is the largest con- 
tribution, we obtain (4.34a). On the other hand, if d >  3, the dominant 
contributions come from small contours and are pure exponentials. A more 
detailed analysis of (4.35), taking into account the stochastic term, shows 
that the results are unchanged except possibly in d = 3, where the exponen- 
tial decay may be modified by multiplicative power-law corrections. 

12 It would be interesting to prove general theorems about Markov chains and processes that 
make rigorous the type of reasoning underlying this last argument. 
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Our proof of Theorem 4.2, by contrast, is based on an argument of the 
form 

d ("volume" enclosed by y) ~< const x ("surfacearea" of y) (4.38) 

Assuming spherical symmetry, this becomes 

d r d-  1 (4.39) (r a) <~ const x 

o r  

]dr/dtl <~ const (4.40) 

which is one power of r weaker than (4.36). It follows from (4.40) that a 
contour of initial radius r0 will survive for a time at least of order ro before 
becoming small. Since the equilibrium probability of such a contour is of 
order exp(-cr0d-m), the mean hitting-time argument (or the Huse-Fisher 
heuristic argument on contributions to the autocorrelation function) 
implies the absence of mass gap for d < 2. This should be compared with 
the absence of mass gap for d <  3 obtained from (4.36). 

Our bounds are too crude for two reasons: 

l. In bounding ( G d ) ( ? )  [first step of (4.17)], we replaced 
A d - - - d ( 7 ' ) - d ( 7 )  by its absolute value--this is, we made the worst-case 
pretense that all transitions are in the same direction. In fact, for most 
configurations the A d  = +1 and A d  = - 1  transitions have almost equal 
probabilities; the difference is expected to be of order l/r, where r is a 
typical "radius of curvature" of the contour ?. So we need a more delicate 
estimation of ( G d ) ( y ) .  

2. Our present version of the mean hitting-time argument requires 
that (Gh)(7)<~c for all y e A , , .  On the other hand, for the conclusion to 
hold, it presumably suffices to have Gh <~ e on A n in some average sense. 
Moreover, this latter is probably the true behavior, i.e., there presumably 
do exist "rare" configurations y e A, for which (Gh)(y) is much larger than 
it is "on the average." So we need a more flexible version of the mean 
hitting-time argument. 

We believe that with these two improvements, our methods could 
yield a rigorous proof of the Huse-Fisher conjectures for the single-contour 
model. A proof for the full Glauber dynamics (at very low temperature) 
would involve considerably more technical complication (to show that 
interactions between contours are irrelevant), but possibly not any 
additional physical ideas. 
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Finally, we ment ion the interesting Monte  Carlo work of Ogielski, (51) 
which generally confirms the Huse-F isher  conjectures, but  also indicates 
that  the asymptot ic  behavior  (4.34) is reached only at unbelievably long 
times, and would be unobservable in any conceivable experiment; the 
observable preasymptot ic  decay appears to be even slower than (4.34), i.e., 
expl- - (t/'r) p] with p < ( d -  1 )/2. 
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NOTE A D D E D  IN P R O O F  

Takano  et aL (52) have also predicted a stretched-exponential  decay for 
the spin-autocorrelat ion function in the low-temperature  Ising model  with 
Glauber  dynamics,  but  their predicted exponent  differs f rom that  of  Huse 
and Fisher. ~176 
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